
1

Pointers المؤشرات

 م.وجدان ياسين Data structure المحاضرة الرابعة

• A pointer is a variable which contains the address in memory of another variable. We can have

a pointer to any variable type.

– The operator & gives the “address of a variable”.

– The indirection or dereference operator * gives the “contents of an object pointed to by a

pointer”.

Address-of operator (&)

The address of a variable can be obtained by preceding the name of a variable with an ampersand

sign (&), known as address-of operator. For example:

 foo = &myvar;

This would assign the address of variable myvar to foo; by preceding the name of the

variable myvar with the address-of operator (&), we are no longer assigning the content of the

variable itself to foo, but its address.

The actual address of a variable in memory cannot be known before runtime, but let's assume, in

order to help clarify some concepts, that myvar is placed during runtime in the memory

address 1776.

In this case, consider the following code fragment:

1

2

3

myvar = 25;

foo = &myvar;

bar = myvar;

The values contained in each variable after the execution of this are shown in the following

diagram:

2

• First, we have assigned the value 25 to myvar (a variable whose address in memory we

assumed to be 1776).

• The second statement assigns foo the address of myvar, which we have assumed to be 1776.

• Finally, the third statement, assigns the value contained in myvar to bar. This is a standard

assignment operation.

The main difference between the second and third statements is the appearance of the address-of

operator (&).

The variable that stores the address of another variable (like foo in the previous example) is what

in C++ is called a pointer. Pointers are a very powerful feature of the language that has many

uses in lower level programming.

Dereference operator (*)

As just seen, a variable which stores the address of another variable is called a pointer. Pointers

are said to "point to" the variable whose address they store.

pointers they can be used to access the variable they point to directly. This is done by preceding

the pointer name with the dereference operator (*). The operator itself can be read as "value

pointed to by".

Therefore, following with the values of the previous example, the following statement:

 baz = *foo;

This could be read as: "baz equal to value pointed to by foo", and the statement would actually

assign the value 25 to baz, since foo is 1776, and the value pointed to by 1776 (following the

example above) would be 25.

It is important to clearly differentiate that foo refers to the value 1776, while *foo (with an

asterisk * preceding the identifier) refers to the value stored at address 1776, which in this case

3

is 25. Notice the difference of including or not including the dereference operator (I have added

an explanatory comment of how each of these two expressions could be read):

1

2

baz = foo; // baz equal to foo (1776)

baz = *foo; // baz equal to value pointed to by foo (25)

The reference and dereference operators are thus complementary:

• & is the address-of operator, and can be read simply as "address of"

• * is the dereference operator, and can be read as "value pointed to by"

Thus, they have sort of opposite meanings: An address obtained with & can be dereferenced

with *.

Earlier, we performed the following two assignment operations:

1

2

myvar = 25;

foo = &myvar;

Right after these two statements, all of the following expressions would give true as result:

1

2

3

4

myvar == 25

&myvar == 1776

foo == 1776

*foo == 25

 ات :المؤشر عن للإعلان العامة الصيغة

data type *pointer name ;

 :- حيث

data type ؤشر مال إليها ير يش التي البيانات نوع هي

pointer name ؤشرمال اسم هو .

 : أمثلة

 ;int * p .1 الصحيح النوع من يرمتغ إلى يريش مؤشر عن إعلان

 int i,j,a[10],b[2],*p,*q; 2 . . الصحيح النوع من ؤشراتموال صفوفاتموال يراتتغمال من مجموعة عن إعلان

 float *q .3 الحقيقي النوع من ير متغ إلى يريش مؤشر عن إعلان

 ;char *r .4 الحرفي النوع من ير متغ إلى يريش مؤشر عن إعلان

 float *m, *n .5 .حقيقيتن قيمتن على ليؤشرا m,n باسم مؤشرين عن إعلان

4

In order to demonstrate that a pointer may point to different variables during its lifetime in a

program, the example repeats the process with second value and that same pointer, mypointer.

// my first pointer

#include <iostream>

using namespace std;

int main ()

{

 int firstvalue, secondvalue;

 int * mypointer;

 mypointer = &firstvalue;

 *mypointer = 10;

 mypointer = &secondvalue;

 *mypointer = 20;

 cout << "firstvalue is " <<firstvalue << '\n';

 cout << "secondvalue is " <<secondvalue<<'\n';

 return 0;

}

Output:

firstvalue is 10

secondvalue is 20

Here is an example a little bit more elaborated:

// more pointers

#include <iostream>

using namespace std;

int main ()

{

 int firstvalue= 5, secondvalue=15;

 int * p1, * p2;

 p1 = &firstvalue; //p1=address of firstvalue

 p2 = &secondvalue;//p2=address of secondvalue

 *p1 = 10; // value pointed to p1 = 10

 *p2 = *p1; // value pointed to p2=value

 pointed to p1

 p1 = p2; // p1 = p2

 (value of pointer is copied)

 *p1 = 20; // value pointed to by p1= 20

 cout << "firstvalue is "<<firstvalue << '\n';

 cout << "secondvalue is "<<secondvalue<<'\n';

 return 0;

}

Output:

firstvalue is 10

secondvalue is 20

Each assignment operation includes a comment on how each line could be read: i.e., replacing

ampersands (&) by "address of", and asterisks (*) by "value pointed to by".

5

Pointers and arrays

The concept of arrays is related to that of pointers. In fact, arrays work very much like pointers to

their first elements, and, actually, an array can always be implicitly converted to the pointer of

the proper type. For example, consider these two declarations:

6

7

Let's see an example that mixes arrays and pointers:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

// more pointers

#include <iostream>

using namespace std;

int main ()

{

 int numbers[5];

 int * p;

 p = numbers; *p = 10;

 p++; *p = 20;

 p = &numbers[2]; *p = 30;

 p = numbers + 3; *p = 40;

 p = numbers; *(p+4) = 50;

 for (int n=0; n<5; n++)

 cout << numbers[n] << ", ";

 return 0;

}

Output:

10, 20, 30, 40, 50,

8

array used to store data of integer type then calculate elements of 10sing pointers read By u: EX

and print the sum of its elements :

#include <iostream>
using namespace std;

int main()
{
int a[10],sum,*p,i;

sum=0;
cout<<"enter the values of array:";
for(p=&a[0];p<&a[10];p++)
 cin>> *p;

for(p=&a[0];p<&a[10];p++)
 sum+=*p;
cout<<"sum="<<sum<<endl;
return 0;
}

 :المثال التالي يوضح استخدام المؤشرات مع الخيوط الرمزية

EX: Write a program in c++ to reverse and print the string:

#include<iostream>

#include<string>

using namespace std;

void reverse(char *s ,int k) {

 char *first, *last, temp;

 first=&s[0];

 last=&s[k-1];

 for(int i=0;i<(k\2);i++)

 { temp= *first;

 *first=*last;

 *last=temp;

 first++;

 last--;

 }

9

int main () {

 int n;

 char str[]=”hello”;

 cout<<str<<endl;

 reverse(str,n);

 cout<<str<<endl;

 return 0;

}

H.W:

Trace the following program, and try to find the output :

#include <iostream>
using namespace std;

int main()

{

 Int i =5;

 int *p,*q;

 p=&i;

 *p = i * *p;

 q = p;

 *q =*q+*p;

 cout<<" i= "<<i<<" \n";

 cout<<" *p= "<<*p<<" \n";

 cout<<" *q= "<<*q<<" \n";

 return 0;

}

