Pointers < i gall

Azl yl) Balaall Data structure (ol (faag.a

« A pointer is a variable which contains the address in memory of another variable. We can have
a pointer to any variable type.

— The operator & gives the “address of a variable”.

— The indirection or dereference operator * gives the “contents of an object pointed to by a
pointer”.

Address-of operator (&)

The address of a variable can be obtained by preceding the name of a variable with an ampersand
sign (&), known as address-of operator. For example:

foo = &myvar;

This would assign the address of variable myvar to foo; by preceding the name of the
variable myvar with the address-of operator (&), we are no longer assigning the content of the
variable itself to foo, but its address.

The actual address of a variable in memory cannot be known before runtime, but let's assume, in
order to help clarify some concepts, that myvar is placed during runtime in the memory
address 1776.

In this case, consider the following code fragment:

myvar = 25;
foo = &myvar;
bar = myvar;

The values contained in each variable after the execution of this are shown in the following
diagram:

myvar
25
1775 1776 1777

&y’ p

foo bar
1776 25

« First, we have assigned the value 25 to myvar (a variable whose address in memory we
assumed to be 1776).

* The second statement assigns foo the address of myvar, which we have assumed to be 1776.
« Finally, the third statement, assigns the value contained in myvar to bar. This is a standard
assignment operation.

The main difference between the second and third statements is the appearance of the address-of
operator (s).

The variable that stores the address of another variable (like foo in the previous example) is what

in C++ is called a pointer. Pointers are a very powerful feature of the language that has many
uses in lower level programming.

Dereference operator (*)

As just seen, a variable which stores the address of another variable is called a pointer. Pointers
are said to "point to" the variable whose address they store.

pointers they can be used to access the variable they point to directly. This is done by preceding
the pointer name with the dereference operator (+). The operator itself can be read as "value
pointed to by".

Therefore, following with the values of the previous example, the following statement:

baz = *foo;

This could be read as: "vaz equal to value pointed to by foo", and the statement would actually
assign the value 25 to baz, since foo IS 1776, and the value pointed to by 1776 (following the
example above) would be 25.

foo

1776
{

1775 1776 1777
25

[memory)

+
25
baz

It is important to clearly differentiate that foo refers to the value 1776, while *foo (with an
asterisk = preceding the identifier) refers to the value stored at address 1776, which in this case

is 25. Notice the difference of including or not including the dereference operator (I have added
an explanatory comment of how each of these two expressions could be read):

baz
baz

foo; // baz equal to foo (1776)
*foo; // baz equal to value pointed to by foo (25)

The reference and dereference operators are thus complementary:

e & is the address-of operator, and can be read simply as "address of"
e ~isthe dereference operator, and can be read as "value pointed to by"

Thus, they have sort of opposite meanings: An address obtained with s can be dereferenced
with *.

Earlier, we performed the following two assignment operations:

myvar = 25;
foo = &myvar;

Right after these two statements, all of the following expressions would give true as result:

myvar == 25
s&myvar == 1776
foo == 1776
*foo == 25

: C&yﬂ}d\dﬁrQNS}Uaabﬁ\lﬂyaﬂ
data type *pointer name ;

& T

Sasal el s) ULl ¢ 5 o data type

34l aul 54 pointer name

LA

1.int* p; zanall g il e arie (A pady Hdise oo Ole]
2 .int i,j,a[10],b[2],*p,*q; nall g gl (e il sl 5 il shoall 5 il e de sena ce (Dle]
3. float *q siall g il (e Harde (I ady e oo e
4. char *r; ol & 8l e Harte) pady e e (Ol
5. float *m, *n CCiis Cried o 185 myn asl g b5 oo e

In order to demonstrate that a pointer may point to different variables during its lifetime in a
program, the example repeats the process with second value and that same pointer, mypointer.

// my first pointer Output:

#include <iostream>

using namespace std; firstvalue is 10
int main () secondvalue is 20

{
int firstvalue, secondvalue;
int * mypointer;

mypointer = &firstvalue;

*mypointer = 10;

mypointer = &secondvalue;

*mypointer = 20;

cout << "firstvalue is " <<firstvalue << '\n';
cout << "secondvalue is " <<secondvalue<<'\n';

return 0;

Here is an example a little bit more elaborated:

// more pointers Qutput:
#include <iostream>
using namespace std;

int main () firstvalue is 10
{ secondvalue is 20
int firstvalue= 5, secondvalue=15;
dme * pl, * P28

pl = &firstvalue; //pl=address of firstvalue

p2 = &secondvalue;//p2=address of secondvalue
*pl = 10; // value pointed to pl = 10
*p2 = *pl; // value pointed to p2=value
pointed to pl
pl = p2; // pl = p2
(value of pointer is copied)
*pl = 20; // value pointed to by pl= 20

cout << "firstvalue 1is "<<firstvalue << '\n';
cout << "secondvalue 1s "<<secondvalue<<'\n';
return 0;

}
Each assignment operation includes a comment on how each line could be read: i.e., replacing
ampersands (&) by "address of", and asterisks (*) by "value pointed to by".

Pointers and arrays

The concept of arrays is related to that of pointers. In fact, arrays work very much like pointers to
their first elements, and, actually, an array can always be implicitly converted to the pointer of
the proper type. For example, consider these two declarations:

- . i - o g "R i w Lt - s | i u
HITHY d,_’,-}_q_.'_?_Ll I,._:I._L'F- L_:ILI: J':":"J} I..mi“l D_‘I_P_._IU\.-I I_--‘IJK_.._'H_'.‘_NI _'I"l J_JI....-:LJI h_-‘l_—,.-.ﬂjJil k_w' i

WS cse ap ol el

int a[10].%p:
. . F " . " . By . ; . o~ " .
(a[ll]]) 2 dfi.all s L,'_:.“‘,I _pnzall ~_L-1 HLEW p L2l Pzl A g s

LE'.J Y

p=a: Hlall 85 2, p=&al0]:

a | " e i _ 1 Ll T [1 I . R
;_Jj"},'| LAY 3 u2iay IL,L.!-.I g Jl_y 5 dagill -3 |___||._‘,_,n|‘_!j P e oF ﬂ[{}] Ll Uge gl M_,_<,:_,.._‘ I..|u£.3

=L Ls s aaall -
'ﬁ -] d..-_ﬂq..ﬂ.._;'J-.-Iu,ﬁ

2y 2kl Jo ol Ll Ol S5 Lis S

v kg | = m .
= e ¥ B §
J,__{;J.,I le e ._"nl_l]

A o e o5y b 2
g or e 3
Q) el o5
mt a[10].%p.*q:
afiH]] sl) sede Go L2sll 0 g 250 J) 53l 0 afi] J) e p 2sh 0170

:ESL'I Imj.wl :_:_:.,,.:?}_' u_.{..:j

p=&a[2]:

—

[a]

q=pt3: Lhes 131

r A JSaIL Loy 53 L350 e ol lee Ul
- - L J (- 4 ‘i

p=&al8]:
q=p-3:

p=&als]:
q=&al[l]:
q=p-q:

Let's see an example that mixes arrays and pointers:

// more pointers Qutput:
#include <iostream>
using namespace std;
10, 20, 30, 40, 50,
int main ()
{

int numbers[5];

int * p;
p = numbers; *p = 10;
p++; *p = 20;

p = &numbers[2]; *p = 30;
p = numbers + 3; *p = 40;
p = numbers; *(pt+4) = 50;
for (int n=0; n<5; n++)

cout << numbers[n] << ",
return 0;

"w.
’

EX: By using pointers read 10 elements of array used to store data of integer type then calculate
and print the sum of its elements :

#include <iostream>
using namespace std;

int main()

{

int a[1@],sum,*p,i;

sum=0;
cout<<"enter the values of array:";
for(p=&a[0];p<&a[10];p++)

cin>> *p;

for(p=&a[0];p<&a[10];p++)

sum+=*p;
cout<<"sum="<<sum<<endl;
return 0;

}

24 el da gdd) ae) sl aladiil ez gy M) QL)
EX: Write a program in c++ to reverse and print the string:
#include<iostream>
#include<string>

using namespace std;
void reverse(char *s ,int k) {

char *first, *last, temp;
first=&s[0];

last=&s[k-1];

for(int 1=0;i<(k\2);i++)

{ temp= *first;
*first=*last;
*last=temp;
first++;

last--;

int main () {
int n;
char str[]="hello”;
cout<<str<<endl;
reverse(str,n);
cout<<str<<endl;
return 0;

}

Trace the following program, and try to find the output :

#include <iostream>
using namespace std;

int main()
{
Int i=5;
int *p,*q;

p=&i;

-*p — i*'*p;

q=p;

*q :*q+*p;

cout<<" = "<<i<<" \n";
cout<<" *p="<<*p<< \n";
cout<<" *g="<<*q<<" \n";
return O;

}

